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Abstract

The S-1 family of uni- and multiprocessors is an extremely high performance but relatively inexpen-
sive general purpose set of digital processing systems being developed for the most demanding National
security applications. A typical S-1 system consists of from one to sixteen S-1 uniprocessors sharing up to
4 gigawords of uniformly addressed main memory. Each uniprocessor of the current (Mark ITA) generation
has computational power roughly equivalent to that of a CRAY-1. In this paper, we give a general descrip-
tion of the S-1 Mark IIA uniprocessor and a somewhat more extensive discussion of its signal processing
hardware and hardware-executed algorithme. QOur focus is a discussion of the felicitous properties of the
uniprocessor components that make the S-1 system a powerful general purpose digital signal processor.

S-1 System Architecture

A basic goal of the S-1 Mark ITA design has been to produce a flexible supercomputer with special signal
processing capabilities. The strategy employed in realising this goal has been to design a high performance
uniprocessor to be used as either as a stand-alone CPU or as a member of a closely coupled network con-
sisting of multiple processors interconnected into a memory of enormous (by previous standards) capacity.
Unlike many current signal processors, an S-1 uniprocessor incorporates its general purpose functions in
the same unit that houses the special purpose high speed arithmetic/signal processing functions; this al-
lows uniform access to signal processing functions without the performance degradation associated with
ancillary processors (e.g., that due to slow bus speeds and transmission of data from general purpose main
memory to special purpose “boxes™).

Space limitations (and the reader’s patience) do not permit a complete description of the designs of
S-1 uniprocessor and multiprocessor systems here; instead, the interested reader may repair to [1] for a
good overview, or to [2] for a complete description of the S-1 system design.

8-1 Instruction Set

The basic S-1 instruction set architecture was designed for high performance implementation, yet is
oriented towards high-level language usage. It includes a vector and signal processing instruction subset, az
well as a few special purpose instructions (e.g. ones for sorting). This combination of powerful elementary
machine capabilities has several implications. It simplifies the efficient use of the the signal processing
constructe from a high level language, since the complexity of generating code for two dissimilar machines
running with two {or more) separate address spaces and differing instruction and data formats is avoided.
In addition, the tight coupling between scalar and vector processing implies a greatly reduced “hardware
dominance™ effect on the choice of algorithms. Ar algorithm can be coded in a more natural or intuitive
fashion, rather than having to be recast to fit the peculiarities of the architecture or implementation. As
an example, the use of branches depending upon the values of just-computed data must be reduced to
a minimum when using a signal processor, since it involves interaction between the host and the signal

_processor.
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The large {two gigabyte) virtual address space of the S-1 architecture greatly simplifies its program-
ming. Large data bases can thereby be conveniently maintained, and many applications can productively
trade off memory capacity against real-time constraints. The cost of memory is dropping rapidly; we
envision having main memory systems of up to 100 megabytes capacity by the end of 1881 {at a cost of no
more than $5000 per megabyte).

Data Types

The S-1 architecture data formats include 9, 18, 36, and 72 bit signed and unsigned integers and 18, 36
and 72 bit floating-point numbers. These basic data types can be organised into more complicated types
including complex numbers (pairs), vectors and arrays.

The three floating-point formats are halfword {one sign bit, five exponent bits and twelve fraction
bitz), singleword (one sign bit, nine exponent bits and 27 fraction bits), and doubleword (one sign bit, 15
exponent bits and 56 fraction bits). The S-1 fioating-point data format also includes a “hidden” normalised
bit. Since all S-1 filcating-point numbers are normalised, it is redundant to include the most significant bit
of the fraction. Thus the actual useful fractions are one bit larger than indicated.

In addition, the floating-point instructions treat certain values specially; this allows the maintainance
of as much information as possible in the presence of overflow, underfiow and division by sero. (The S-1
data formats are described in [2]; see [3] for a detailed description of a similar floating-point format.)

The 18-bit floating-point format is a rather novel data type for a general purpose computer; however, it
promises to be the most useful data type for signal processing. In particular, it simplifies the computation
of FF Ts, since scaling is done automatically, and it also makes the calculation of low-precision FFTs more
accurate [4] than can be obtained with an integer format of the same total data word sise.

8-1 Mark IIA Uniprocessor Implementation

The time-consuming portions of most signal processing algorithms are simple parallel computations;
however, as new machines become ever more parallel, the inherently serial or less structured computations
will dominate execution time. The ability of a high performance signal processing architecture to do fast
scalar processing will thus become as important as its ability to rapidly perform FFTs or vector multiplies.
In addition, the plot of instruction rate vs. operation size must not have too large of a gap (Figure
1) between scalar (characterised by small sise and little or no structure) and vector (characterised by
arbitrary size and highly structured) operations; such a large gap in processing capability would make
parallel but non-structured algorithms suffer greatly in performance, as has actually been seen in some
recent superprocessor implementations.

The S-1 Mark HOA has attempted to address this evolving situation by having a balance of high
performance scalar and vector processing capabilities. The Mark I1A uses the same hardware to execute
both kinds of instruction, which leads rather naturally to a smooth trade-off between the instruction rate
and the operation sise.

The scalar instruction cycle time of the Mark ITA is 50 ns; the Mark ITA can therefore execute up to 20
million instructions per second. An S-1 scalar instruction can be quite powerful in that a single instruction
may include indexing (including shifting of the indices), multiple memory or register reads (including the
virtual-to-physical address translation) and finally execution of the operation itself, all pipelined at the rate
of 50 ns per instruction. This is particularly important due to the high-level language orientation of most
current systems development: many high level language constructs compile into single S-1 instructions. Of
course, more complicated instructions don't pipeline at the maximum rate; some examples of these are
subroutine calls or most types of divide instructions.

The operation of a pipeline is not always “smooth”; occasionally there are dependencies between nearby
(in time) instructions which cause interlocks. The scalar latencies of the various instruction interlocks
are complicated, due to the complex nature of the Mark IIA pipe. However, for most signal processing
applications, the most interesting time is the latency of the “execution” of operations (i.e. the time from
starting an addition operation to when the sum is available for use in the next operation). For most
scalar operations of the Mark IIA, this quantity is readily determined. If the instruction is some form
of multiplication (all precisions of multiplication and single precision reciprocation or square root), the
latency is 150 ns. For most other *add class™ operations, the execution latency is 100 ns. These “add
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Figure 1. Graph of Operation rate vs. operation sixe.

class” operations include floating-point and integer addition and subtraction of all precisions, shifts, byte
loads and deposits, minimum, maximum, absolute value, bit counting and “find first one bit®. Other
scalar operations take longer depending upon their complexity. Again it should be emphasized that these
instructions all pipeline at 50 ns, the latency period is seen by the user only when there are nearby
instruction dependencies.

A happy consequence of having such short scalar latencies is the ease with which they often can be
eliminated by a small amount of code movement; thus there if there iz at least one instruction between
the *add class” instruction and the instruction which uses the “add class® result, the latency of the “add
class” instruction is invisible and it will pipeline at 50 ns. Similarly, there need be only two instructions
between the initiation of a multiplication and its use for the multiplication latency to be invisible.

The vector throughput of the Mark IIA can be as much 20 times greater than the peak scalar level
(the vector halfword complex ficating-point FFT does a complete butterfly every 25 ns, whereas the best
scalar program could perform the same butterfiy in 500 ns, i.e. a 1024-point complex FFT takes 0.13 ms,
compared to 2.6 ms for a scalar equivalent); a better rule of thumb is that vector equivalents are four times
faster than well-coded scalar loops. To give an better idea of the speeds involved, the loop

for I := 1 to SIZE do A[I] := B|I]|+ A[I]*D;

is implemented by a single instruction and will require [12.5 SIZE + 250] ns to cmplete for halfwords
(18-bits), [25 SIZE + 250] ns for singlewords (36-bits), and [50 SIZE + 250] ns for doublewords (72-bits).

The vector and special instructions are decoded using the same hardware as is used for scalar instruc-
tions; thus the rate of vector instructions is determined by the size of the operation plus a small additional
overhead (0-300 ns, depending upon the instruction). The small sise of the overhead is important; it implies
that the performance is not degraded significantly when processing short vectors. In fact, for many vector
operations, the execution time for a vector of length two is the same as for the equivalent scalar code.

Table 1 lists some representative instructions and their execution times; tables 2 and 3 lists some vector
and signal processing times.
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Instruction (H-balfword, S-singleword, D-doubleword) Pipeline Time Latency

Move (HSD) 50 ne 100 ns

Shift (HSD) 50 ns 100 ns

Load Byte (SD) 50 ns 100 ns
Floating-point Add (HSD) 50 ns 100 ns
Floating-point Multiply (HSD) 50 ns 150 ns
Floating-point Reciprocate (HS) 50 ns 150 ns
Floating-point Square Root (HS) 50 ns 150 na
Floating-point Reciprocate (D) 350 ns 450 ns
Floating-point Sine (HS) 300 ns 400 ns

Table 1. Selected Mark IIA Scalar Instructions.

Instruction (H-halfword, S-singleword, D-doubleword) Startup Time Time per Iteration

for I := 1to SIZE do X&I‘ =D (H 250 ns 6.25 ns

for I := 1t0o SIZE do X |[I|:= D (Sg 250 ns 12.5 ns

for I := 1t0 SIZE do X |I] := D (D) 250 ns 25 ns
for I := 1 to SIZE do X[I%:: X[IN+YI]*s (H) 250 ns 12.5 ns
for I := 1to SIZE do X|[I]|:= X{I| 4+ Y [I|*S (S) 250 ns 25 ns
for I := 1to SIZE do X[I]:=X{I]+Y If*S éD) 250 ns 50 ns
for I := 110 SIZE do X|I|:=Y|I|+ Z[I|+S (H) ’ 250 ns 18.75 ns
for I :=1t0 SIZE do X [I}:=Y [I] + Z[I]*S (S) 250 ns 37.5 ns
forI := 1t0 SIZE do X|[I|:=Y|[I]+ Z[I]+S (D) 250 ns 75 ns

Table 2. Selected Mark IIA Vector Instructions.

Instruction (H-balfword, S-singleword) Time per Iteration
1024 Point Complex Floating-point FFT (H 1.3 ms
1024 Point Complex Floating-point FFT (S 5.2 ms

Table 3. Selected Mark IIA Signal Processing Instructions.

Hardware Descripiion of the Mark IIA

Each S-1 uniprocessor contains a multiple stage “pipe” of instructions-in-process, segmented into 50
ns pipe intervals; that is, each uniprocessor operates at a peak rate of 20 million instructions per second
(MIPS) for scalar operations. As Figure 2 indicates, there are two principal moduies of an S-1 Mark ITIA
which implement this pipeline: the IBOX and the ABOX. The function of the IBOX is to prepare and deliver
operands and instructions to the ABOX, whose function, in turn, is to perform the requested operation
and return the results thereof to the IBOX.

The S-1 Mark IIA IBOX

The IBOX itself consists of four microengines: the F-sequencer, which fetches instructions, the P-
sequencer, which decodes instructions, the I-sequencer, which fetches data and prepares operands, and
the M-sequencer which serves as a memory interface and control unit. The F-, P-, and I-sequencers each
control different portions of the pipeline; the M-sequencer services memory (cache miss) requests from the
F- and I-sequencers.

We will not delve deeply in the operation of the IBOX; however, two aspects of its design are relevant
to a discussion of signal processing on the Mark IIA. The first is the parallel nature of the data cache
in the IBOX; in particular, it can read out eight sequential halfwords of data every 50 ns cycle. This
performance level is necessary to achieve the needed vector bandwidth. To allow the arbitrary alignment
of operands (scalars and vectors) there is an alignment network; this is combined with a small buffer
memory to implement a “operand queue® to both align and buffer the deliver of data from the IBOX to the
ABOX. This operand queue has a special function for signal processing. We have developed an algorithm
for parallel “bit reversal® of vectors using this memory [5] which allows the *bit reversal® operation to
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Figure 2. S-1 Mark IIA Uniprocessor Functional Diagram.

proceed at the same rate as a vector move.
The S-1 Mark IIA ABOX

We will limit our discussion of the ABOX to its arithmetic capabilites; however, a few explanations
are in order. The ABOX internally works with a uniform bus format (the “internal” format); thus we
occasionally refer to the S-1 architecture format as the external format. The main relevence of this to
rignal processing is in the increased accuracy with which many functions can be computed. This extra
accuracy is necessary for the “good to the last bit” evaluation of many of the ABOX special functions
(an example would be the SINE instruction). In addition, the evaluation of “composed” functions (ie a
function formed by the composition of more than one basic operation) can be evaluated with less rounding
error; this is important in the execution of a FFT or a dot product. Note that all cycle time references in
the ABOX description are to 25 ns cycles, since the ABOX runs at twice the rate of the IBOX.

The arithmetic hardware of the ABOX consists of a Multiplier Functional Unit and an Adder Functional
Unit. The term “functional unit® refers to its independent nature, i.e. the adder and multiplier are capable
of simultaneous operation. The multiplier has six pipeline stages (for a total latency of 150 ns) and the
adder has four {for a latency of 100 ns); both can produce a result every (25 ns) cycle.

Multiplier Functional Unit The multipler functional unit includes four independent 18x36 bit multiplier
arrays and two half-word integer or ficating-point adders, all of which are capable of simultaneous opera-

tion.

These are interconnected in various ways for executing different instructions. Some examples of such
variability are two cycles of all 4 arrays to do a double-word integer or floating-point multiplication, one
cycle of two arrays for a single-word integer or floating-point multiplication and one cycle of all four arrays
plus two half-word adders to do a complex half-word multiplication.

Division is accomplished within the multiplier by one of two methods, both involving reciprocation.
To compute single-word y/z, we first calculate 1 /2 by a piecewise quadratric approximation initiated with
a table-lookup value [8]. With the tables included in the Mark IIA, this method produces about 30 bits
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of precision for 1/z. We may then rapidly calculate a slightly imprecise value of y/z by multiplication;
a precise result requires an additional multiplication, ip order that correct rounding may be guaranieed.
For double-word division, we compute the reciprocal as before to 30 bits and then use a single Newton
iteration to double the precision. As before, an additional multiplication is necessary {for precise division.
(For integer double-word division, in which 72-bite are involved, we must iterate twice).

The piecewise quadratic approximation techniques employed to calculate for reciprocals also work well
for many other functions [6]. The S-1 Mark IIA ABOX implements sine, cosine, arctangent, exponentjal
(2%, €%, and y*), logarithm (ig(x), In(x), and log(x)), and er{ {error function) using this method; thus, the
calculation of these functions can be pipelined at 50 ns per result,

Adder Functional Unit The adder functional unit is capable of doing floating-point or integer adds of
all precisions, shifts, byte operations, boolean, bit counting, etc. Ii coneists of four pipe stages and can
produce a new result every cycle. The floating-point addition algorithm it employs is fairly novel [7], but
discuesion of it is deferred to the reference for reasons of brevity and its secondary relevance to signal

processing per se.

S§-1 Muliiprocessor

There are many signal processing tasks which are too compute-intensive to be efectively serviced by
current computing systems. (Examples include real-time speech processing, radar and sonar imaging and
discrimination.) The S-1 multiprocessor is an attempt to make some of these tasks more feasible in the near
term. By combining extremely high-performance uniprocessors {the Mark IIA and future S-1 generations)
into a medium population multiprocessor (e.g. 16 processors), many compute-intensive algorithms can be
run from 10 Vo 100 Uimres faster than ob the best currently available systems.

The most siraightforward use of a multiprocessor system is to dedicate its separate processors to
performance of different tasks {“task-pipelining”). Ap obvious example of such a division would be data
coliection, preprocessing, analysis, and postprocessing in a typical real time signal processing enviornment.
When this level of task partitioning fails to achieve the desired performance speed-up, one may use multiple

processors in confederation Lo perform single tasks.

For instrance, one could just go buy a hundred low-cost signal processors, attach them to a host
computer and claim a 100-fold increase in performance over a single system. Unfortunately, it has been
found (more than once) that the “little” things become important when striving for very high degrees of
parallelism. The inherently serial parts of the algorithm of interest will dominate as the parallel loops are
made to run ever faster, and when new algorithms which reduce the serial sections are implemented, it is
usually found that the interprocessor communication begins to dominate execution time. This is because
even though the cost of one signal processor talking to one host is (relatively) insignificant, the cost of 100

doing #o typically is not.

The S-1 architecture and the Mark IIA implementation have been designed with multiprocessing in
mind. The logical structure of the S-1 muliiprocessor is depicted in Figure 3. The member processors share
a large (16 billion words) commor physical address space witk all accesses to the shared memory being
mediated by the Crossbar Switch. The use of cacher is important in reducing contention for memory access
by two or more processors. With a 989 “hit rate,” the Switch data traffic of a multiprocessor is reduced by
a factor of 100. This extremely high hit rate is not at all unlikely: we have seen it in detailed simulations,
it compares favorably with the measured hit rates of the S-1 Mark 1 (95-98% using a 4K cache), and it

agrees well with the predictions of [8].

With the use of shared memory and special inierprocessor communication instructions, relatively tight
coupling beiween member processors of medium-eised multiprocessors can readily be achieved. When
using an S-1 multiprocessor system in a “task-pipelined® manner, resulis from previous stages may be
passed directly to the next stage without first being evicted from main memory, without transmission over
bandwidth-limited buses, and without delaying the execution of the current stage of processing on the next
batch of data. We have also been working on the more complicated effort of using an S-1 multiprocessor
for efiicient execution of a single task; preliminary studies indicate that applications considered tightly-
coupled may nonetheless be able to achieve a speed-up factor of more than ten on a sixteen-processor

system ([9]).
Summary

The S-1 Mark IIA uniprocessor [and future implementations of the S-1 architecture) will provide
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Figure 8. S-1 Multiprocessor configuration.

a level of compute power, programmability and cost-effectiveness which will allow the performance of
signal processing tasks not feasible with current systems. The combination of general-purpose and signal
processing architectures in one machine is expected to be particularly valuable in reducing signal processing
system costs and creation latencies. For those tasks which are too demanding even for such a powerful
processor, the S-1 Mark ITA multiprocessor system will improve the total available compute power by more
than an order-of-magnitude, while retaining the unusually high programmability and cost-effectiveness of

the uniprocessor.
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